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Abstract. In this paper we consider numerical approximations of hyperbolic conservation laws in the

one-dimensional scalar case, by studying Godunov and van Leer’s methods. Before to present the numerical

treatment of hyperbolic conservation laws, a theoretical introduction is given together with the definition of

the Riemann problem. Next the numerical schemes are discussed. We also present numerical experiments for

the linear advection equation and Burgers’ equation. The first equation is used for modeling discontinuities in

fluid dynamics; the second one is used for modeling shocks and rarefaction waves. In this way we can compare

the different behavior of both schemes.
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1 Introduction

The mathematical description of many practical problems in science and engineering leads
to conservation laws, that is time-dependent systems of partial differential equations (PDEs),
usually hyperbolic and nonlinear, with a particularly simple structure. Fluid and gas dynam-
ics, relativity theory, quantum mechanics, aerodynamics, meteorology, astrophysics - this is
just a partial list of subjects where conservation laws apply. The study of numerical solution
of hyperbolic conservations laws is an important and interesting field of research because there
are special difficulties associated with solving these PDEs (i.e. shock formation, discontinuous
solutions) and numerical methods based on simple finite-difference approximations may be-
have well for smooth solutions but can give disastrous results when discontinuities and shocks
are present(see [5]). So, the study of linear conservation laws is important for understanding
the behavior of a numerical scheme, but it is also very important to consider that the intro-
duction of the nonlinearity changes dramatically the nature of the problem because it induces
a loss of the uniqueness of the weak solution ([8, 9]). The weak solution that is physically rele-
vant has then to be properly characterized and the numerical approximations have to respect
this characterization otherwise they would converge to a weak solution which has no physical
meaning. Therefore, the study of numerical approximations for nonlinear conservation laws is
quite difficult. However, in the case of scalar conservation laws many important issues are well
understood. In fact, since the numerical difficulties encountered with systems of equations
in one or multidimensional space are already encountered in the one-dimensional scalar case,
historically numerical schemes were first derived for scalar conservation laws. Only when they
proved to perform well in this setting, they were extended to systems of conservation laws.
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Therefore, we will treat only hyperbolic scalar conservation laws: the equations take the
form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (1)

where u(x, t) is a conserved quantity, or state variable, while f(u) is called flux function.

An important class of methods for solving hyperbolic conservation laws are the Godunov-
type methods, that use, in some way, an exact or approximate solution of the Riemann problem
and do not produce oscillations around strong discontinuities such as shocks or contact dis-
continuities. But these methods are only first order and so the solutions are smoothed around
discontinuities. Therefore other methods have been developed, which are at least second-
order accurate on smooth solutions and attempt to control the generation of overshoots or
undershoots in the vicinity of shocks. These methods are called high resolution methods and
can be viewed as an extension of Godunov’s approach ([1, 3, 4, 6, 8, 9]).

This paper is organized as follows. In the next Section one-dimensional hyperbolic con-
servation laws are introduced and studied. Furthermore, classical and weak solutions are
defined and the Riemann problem is introduced and solved. The Riemann problem forms the
underlying physical model for the Godunov-type methods. In Section 3 Godunov’s method,
proposed by Godunov in 1959, and van Leer’s method, an example of high resolution method,
are discussed. In the last Section, we test both methods with linear and non linear problems,
to compare their different behavior in presence of shock and discontinuous solutions. As non
linear problem, we consider Burgers’ equation because it is an important test for numerical
methods dealing with nonlinear PDEs.

2 Hyperbolic Conservation Laws

2.1 Integral and Differential Form

Equation (1) derives from physical principles. As an example, we consider the equation for
conservation of mass in a one-dimensional gas dynamics problem, i.e., flow in a tube where
properties of the gas such density and velocity are assumed to be constant across each section
of the tube.

Let x represent the distance along the tube and let ρ(x, t) be the density of the gas at
point x and time t. This density is defined in such a way the total mass of gas in any given
section from x1 to x2 is given by the integral of the density. By assuming that the walls of
the tube are impermeable and the mass is neither created nor destroyed, the mass in this one
section can change only because of gas flowing across the endpoints x1 or x2.

Let v(x, t) be the velocity of the gas at the point x and time t. Then the rate of flow, or
flux of gas past in this point, is given by the product ρ(x, t)v(x, t).

Then the rate of change of mass in [x1, x2] is given by the difference in fluxes at x1 and
x2:

d

dt

∫ x2

x1

ρ(x, t)dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t)
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So, we obtain an integral form of the conservation law. By integrating this in time from
t1 to t2 (t2 > t1) we obtain:

∫ x2

x1

ρ(x, t2)dx =

=

∫ x2

x1

ρ(x, t1)dx+

∫ t2

t1
ρ(x1, t)v(x1, t)dt−

∫ t2

t1
ρ(x2, t)v(x2, t)dt

To obtain the differential form of the conservation law, we assume that the functions ρ
and v are differentiable functions.

Then, the following equalities hold:

∫ t2

t1

∂

∂t
ρ(x, t)dt = ρ(x, t2)− ρ(x, t1)

and

∫ x2

x1

∂

∂x
(ρ(x, t)v(x, t))dx = ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t).

By substituting these expressions in the previous equation, we obtain:

∫ t2

t1

∫ x2

x1

{ ∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t))}dxdt = 0.

Since this must hold for any section [x1, x2] and over any time interval [t1, t2], we conclude
that the integrand of this equation must be identically zero, i.e.,

ρt + (ρv)x = 0

This is the differential form of the conservation law for the conservation of the mass and
can be solved in isolation only if the velocity v(x, t) is known a priori or is known as a function
of ρ(x, t) (in this case we have a scalar conservation law for ρ), otherwise we can solve this
equation in conjunction with other equations, typically with equations for the conservation of
momentum and energy, and so we have a system of conservation laws.

As example of scalar conservation law, we consider the flow of cars on a highway. So,
ρ denote the density of cars and v the velocity. We can assume that v is a given function
of ρ because on a highway we would optimally like to drive at some speed vmax (the speed
limit), but in heavy traffic we slow down, with velocity decreasing as density increasing. The
simplest model is the linear relation

v(ρ) = vmax(1− ρ/ρmax)

where ρmax is the value at which cars are bumper to bumper. Therefore, setting f(ρ) =
ρvmax(1− ρ/ρmax), we obtain the scalar conservation law ρt + (f(ρ))x = 0 (see [8]).
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2.2 Classical and Weak Solutions

The equation (1) must be augmented by some initial conditions and also possibly boundary
conditions on a bounded spatial domain. The simplest problem is the initial value problem,
or Cauchy problem, defined for −∞ < x < ∞ and t ≥ 0. We must specify initial conditions
only:

u(x, 0) = u0(x) −∞ < x < ∞ (2)

It is very easy to see that classical solutions of (1)-(2) are constant along the characteristics,
which are curves (x(t), t) defined by







dx

dt
= f ′(u(x(t), t)) t ≥ 0

x(0) = x0
(3)

To see this, differentiate u(x, t) along one of these curves: in this way, we find the rate of
change of u along the characteristics and we find that

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t)

= ut + f ′(u)ux
= ut + (f(u))x
= 0,

confirming that u is constant along these characteristics. Moreover, this shows that the
characteristics travel at constant velocity which is equal to f ′(u0(x0)).

Simple arguments show that if u0(x) is increasing (decreasing) and f(u) is convex (con-
cave), the classical solution of (1)-(2) is well defined for all t > 0. However, in the general
case, classical solutions fail to exist for all t > 0 even if u0 is very smooth (see [8, 9]). This
happens when infx u

′
0(x)f

′′(u0(x)) < 0: then classical solutions exist only for t in [0, T ∗] where

T ∗ = − 1

infx u′0(x)f
′′(u0(x))

.

At the time t = T ∗ the characteristics first cross, the function u(x, t) has an infinite slope –
the wave is said to break by analogy with waves on a beach – and a shock forms.

We state this result in the following theorem.

Theorem 2.1 If we solve (1)-(2) with smooth initial data u0(x) for which u′0(x)f
′′(u0(x) is

somewhere negative, then the wave will break at time

T ∗ = − 1

infx u′0(x)f
′′(u0(x))

.

Proof. Since along characteristics u(x(t), t) is equal to u0(x0), we can write x(t) =
x0 + tf ′(u0(x0)). We can calculate the blow up time (i.e., the first time when two differ-
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ent characteristics arrive at same point (x, t)). In this case there are two points, x0 and x0,
such that

x = x0 + tf ′(u0(x0)) = x0 + tf ′(u0(x0)),

that is,

t = − x0 − x0
f ′(u0(x0))− f ′(u0(x0))

= − 1

u′0(ξ)f
′′(u0(ξ))

,

where ξ lies between x0 and x0. Obviously, this expression for t makes sense when 1
u′

0
(ξ)f ′′(u′

0
(ξ))

is negative. Thus, the blow up occurs if u′0(x)f
′′(u0(x) is somewhere negative: at t = T ∗ the

solution forms a shock wave.

To allow discontinuities, which arise in a natural way in this situation, we define a weak
solution of conservation law.

Definition 2.2 A function u(x, t), bounded and measurable, is called a weak solution of the
conservation law (1)-(2), if for each φ ∈ C1

0(IR× IR+), the following equality holds:

∫ ∞

0

∫ +∞

−∞

[φtu+ φxf(u)]dxdt = −
∫ +∞

−∞

φ(x, 0)u(x, 0)dx. (4)

Here C1
0(IR× IR+) is the space of functions that are continuously differentiable with com-

pact support, that is, φ(x, t) is identically zero outside of some bounded set and so the support
of the function lies in a compact set.

In this way we rewrite the differential equation in a form where less smoothness is required
to define solution. In fact, the basic idea to define a weak solution of conservation law is to
take the PDE, multiply by a smooth test function, integrate one or more times over some
domain, and then use integration by parts to move derivatives off the function u and onto the
smooth test function. The result is an equation involving fewer derivatives on u, and hence
requiring less smoothness.

2.3 The Riemann Problem

A Riemann problem is simply the conservation law together with particular initial data con-
sisting of two constant states separated by a single discontinuity,

u0(x) =

{

ul x < 0,
ur x > 0.

(5)

As an example, consider Burgers’ equation, in which f(u) = 1
2u

2, so our conservation law
becomes:

ut + (
1

2
u2)x = 0. (6)
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This is also called inviscid Burgers’ equation, since the equation studied by Burgers also
includes a viscous term:

ut + (
1

2
u2)x = ǫuxx. (7)

Equation (7) is the simplest model that includes the nonlinear and viscous effects of fluid
dynamics. The analitic solution is available through a transformation known as the Cole-
Hopf transformation, because, around 1950, Hopf, and independently Cole, solved exactly
this equation ([2, 7]). Thus Burgers’ equation provides an important test for many proposed
numerical methods dealing with nonlinear PDEs.

Consider the Riemann problem applied to inviscid Burgers’ equation (6), with piecewise
constant initial data (5). The form of the solution depends on the relation beetwen ul and ur.

First case: ul > ur.

In this case there is a unique weak solution,

Figure 1: Shock wave: ul > ur

|
0

u_l

u_r

__________

u(x, t) =

{

ul x < st
ur x > st.

where

s =
(ul + ur)

2

is the shock speed, the speed at which the discontinuity travels.

Second case: ul < ur.

In this case there are infinitely many weak solutions, since between the points ult < x < urt,
there is no information available from characteristics. To determine the correct physical
behavior we adopt the vanishing viscosity approach by considering equation (7): equation (7)
is a model of (6) valid only for small ǫ and smooth u. If the initial data is smooth and ǫ very
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small, then before the wave begins to break the ǫuxx term is negligible compared to other
terms and the solutions to both PDEs look nearly identical. As the wave begins to break,
the term uxx grows much faster than ux and at some point the ǫuxx term is comparable
to the other terms and begins to play a role. This term keeps the solution smooth for all
time, preventing the breakdown of solutions that occurs for the hyperbolic problem. As ǫ
goes to zero the solution of the viscous Burgers’ equation becomes sharper and sharper and
approaches the discontinuous solution of the inviscid Burgers’ equation.

Figure 2: Rarefaction wave: ul < ur

|
0

u_l

u_r

____________

Therefore, to state the weak solution physically correct to this Riemann problem, we con-
sider the solution stable to perturbations and obtained as the vanishing viscosity generalized
solution. This is called rarefaction wave or expansion fan and corresponds to a series of
characteristics emanating from the origin with continuous slopes between ul and ur:

u(x, t) =











ul x < ult
x/t ult ≤ x ≤ urt
ur x > urt

So, shock or rarefaction waves are the two possible solutions of the Riemann problem.

More generally, for arbritrary flux function f(u) we have the following relation between
the shock speed s and the states ul and ur, called the Rankine-Hugoniot jump condition:

f(ul)− f(ur) = s(ul − ur). (8)

For scalar problems this gives simply

s =
f(ul)− f(ur)

ul − ur
=

[f ]

[u]

where [·] indicates the jump in some quantity across the discontinuity.

As demonstrated above, there are situations in which the weak solution is not unique
and an additional condition is required to pick out the physically relevant vanishing viscosity
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solution. Since the condition which defines this solution as the limiting solution of the viscous
equations as ǫ goes to zero is not easy to work with, we find simpler conditions. For scalar
equations a shock should have characteristics going into the shock, as time advances. A
propagating discontinuity with characteristics coming out of it is unstable to perturbations.
To this aim the concept of entropy condition is introduced. There are general forms of this
condition, due to Oleinik, and yet another approach to the entropy condition based on entropy
functions (see[1, 8]), but now it is sufficient the following definition:

Definition 2.3 A discontinuity propagating with speed s given by (8) satisfies the entropy
condition if

f ′(ul) > s > f ′(ur).

By considering the previous example, when ul < ur the entropy condition is violated: in
fact, characteristics come out of shock as time advances and the propagating discontinuity is
unstable to perturbations. Therefore the solution is not a shock wave but a rarefaction wave.

3 Numerical methods

Let us consider the Cauchy problem for conservation laws (1)-(2). When we attempt to
calculate these solutions numerically, new problems arise. A finite-difference discretization
of the conservation law (1) is expected to be inappropriate near discontinuities, since it is
based on truncated Taylor-series expansions. Indeed, if we compute discontinuous solutions
to conservation laws using standard methods, we typically obtain numerical results that are
very poor. For example, natural first order accurate numerical methods have a large amount of
numerical viscosity that smoothes the solution in much the same way physical viscosity would,
while a standard second order method eliminates this numerical viscosity but introduces
dispersive effects that lead to large oscillations in the numerical solution. Therefore we would
like to have numerical methods constructed ad hoc to solve hyperbolic conservation laws,
which are accurate in smooth regions and give good results around shocks. First we consider
Godunov’s method: it uses the exact solution of the Riemann problem and do not produce
oscillations around discontinuities. Unfortunately, it is only first order accurate and so the
solutions are very smoothed around discontinuities. A generalization of the Godunov’s method
is done by the van Leer’s method, an example of high resolution method, characterized by
second order accuracy on smooth solutions and the absence of spurious oscillations in the
computed solution.

Both methods, that we will study in detail, can be written in conservative form.

Definition 3.1 Given a uniform grid with time step ∆t and spatial mesh size ∆x, a numerical
method is said to be conservative if the corresponding scheme can be written as:

vn+1
j = vnj − λ(gn

j+ 1

2

− gn
j− 1

2

), j ∈ ZZ n ≥ 0 (9)

where vnj approximates u(xj , tn) at the point (xj = j∆x, tn = n∆t), λ =
∆t

∆x
and g :
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IR2k −→ IR is a continuous function, called the numerical flux (function), that defines a
(2k + 1)-point scheme.

gn
j+ 1

2

= g(vnj−k+1, . . . , v
n
j+k).

The values v0j are given by initial conditions.

Essentially, the conservative form ensures that the discretization technique actually rep-
resents a discrete approximation to the integral form of the conservation laws, because the
time derivative of the integral of v over a given space domain only depends on the boundary
fluxes and not on the fluxes within this domain. Now, we can motivate the name of this type
of scheme more in detail. This form is very natural if we view vnj as an approximation of the

average unj of u(·, tn) on the cell [xj−1/2, xj+1/2] (where xj±1/2 = xj ± ∆x
2 ), defined by

unj =
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx.

Since the weak solution u(x, t) satisfies the integral form of the conservation law, we have:

∫ xj+1/2

xj−1/2

u(x, tn+1)dx =

∫ xj+1/2

xj−1/2

u(x, tn)dx

−[

∫ tn+1

tn
f(u(xj+1/2, t))dt−

∫ tn+1

tn
f(u(xj−1/2, t))dt].

Dividing by ∆x and using the averages unj this gives

un+1
j = unj − 1

∆x
[

∫ tn+1

tn
f(u(xj+1/2, t))dt−

∫ tn+1

tn
f(u(xj−1/2, t))dt].

Comparing this to (9), we see that the numerical flux function can be considered as an average
flux through xj+1/2 over the time interval [tn, tn+1],

gnj+1/2 =
1

∆t

∫ tn+1

tn
f(u(xj+1/2, t))dt.

An other important property of our numerical methods is the consistency with the original
conservation law, that is the numerical flux function g reduces to the true flux f for the case
of constant flow:

g(u, u, . . . , u) = f(u) ∀u ∈ IR .

For consistency it suffices to have g a Lipcschitz continuous function of each variable, i.e.
there is a constant K such that

|g(uj−k+1, . . . , uj+k)− f(u)| ≤ K max
−k+1≤i≤k

|uj+i − u|,
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for all uj+i sufficiently close to u.

The main advantage of conservative and consistent schemes is that, when they converge,
they converge to solutions whose shocks or discontinuity satisfy automatically the jump con-
ditions, that is, the discontinuities always travel at the correct velocity. This important result,
which is not true for non conservative or non consistent schemes, is due to Lax and Wendroff
(the proof is given in [8]).

Theorem 3.2 (Lax-Wendroff) Assume that the scheme (9) is consistent with the conser-
vation law (1)-(2) and that it generates a sequence that converge to a function u∗ as the
gridsizes ∆x, ∆t go to zero. Then, u∗ is a weak solution of the conservation law.

3.1 Godunov’s method

Godunov’s method is an example of conservative scheme. In this method, the solution is
considered as piecewise constant over each mesh cell at a fixed time and the evolution of the
solution to the next time step results from the wave interactions originating at the boundaries
between adjacent cells. The cell interfaces separate two different states at the left and at
the right side, and the resulting local interaction can be exactly resolved since the initial
conditions at time t = n∆t correspond to the Riemann problem. In order to define completely
the interaction between adjacent cells, the time interval over wich the waves are allowed to
propagate should be limited by the condition that adjacent Riemann problems do not interfere.
This leads to a form of CFL condition.

Godunov’s method can be described as follows ([1, 3, 8]):

1. Given data vnj at time tn, construct a piecewise constant function v̂nj (x, tn) defined by

v̂nj (x, tn) = vnj xj−1/2 ≤ x ≤ xj+1/2. (10)

Figure 3: First stage of Godunov scheme at time tn

| | |
x_(j−1) x_j x_(j+1)

v_(j−1)

v_j

v_(j+1)

2. Solve the local Riemann problem at the cell interfaces, that is, on each subinterval
[xj , xj+1] and for t ≥ tn, solve



Numerical Methods for the solution of Hyperbolic Conservation Laws 11















∂

∂t
v̂nj +

∂

∂x
f(v̂nj ) = 0

v̂nj (x, tn) =

{

vnj , xj < x < xj+1/2

vnj+1, xj+1/2 < x < xj+1

(11)

3. Define the approximation vn+1
j at time tn+1 by averaging the Riemann problem solution

v̂nj at the time tn+1, so

vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v̂nj (x, tn+1)dx. (12)

These values are then used to define new piecewise constant data v̂n+1
j (x, tn+1) and the

process repeats.

The first and third stages are of numerical nature and can be considerd as a projection
steps, independent of the second, physical, stage, the evolution step.

Figure 4: Linear convection: translation of discontinuity

| | |
x_(j−1) x_j x_(j+1)

<−>
a t

<−>
a t

u_(j−1)

u_j

u_(j−1)

The basic steps of the Godunov approach can best be made clear when applied to the
simple linear advection equation ut+aux = 0, with a > 0. The first step is independent of the
equation to be solved. The second, physical, step is obtained from the exact solution of the
equation at the interface. For the linear advection equation, the discontinuity at the interface
is translated over the distance a∆t without modification, resulting in the situation shown in
Figure 4. The new approximation at time level n + 1 results from the averaging of this new
state. Since the exact linear solution is

v̂n(x, t) = un[x− a(t− n∆t)],

the new average value in cell i is obtained as
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vn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

un(x− a∆t)dx

=
1

∆x
[a∆tvni−1 + (∆x− a∆t)vni ]

= vni − a
∆t

∆x
(vni − vni−1)

In practice the Godunov’s scheme is equal to the first-order upwind scheme when we solve
the linear advection equation.

More in general, provided we assume the CFL condition

λmax
u

|f ′(u)| ≤ 1

2
,

so that the waves issued form the points xj−1/2 and xj+1/2 do not interact, the solution is
obtained by solving a juxtaposition of local Riemann problems and

v̂nj (x, t) = v̂R(
x− xj+1/2

t− tn
; vnj , v

n
j+1), xj ≤ x ≤ xj+1, (13)

for all t > tn, where v̂R is the solution of the local Riemann problem.

In order to derive an explicit form of the scheme, let us integrate the equation (11) over
the rectangle (xj−1/2, xj+1/2)× (tn, tn+1). Since the function is piecewise smooth, we obtain:

∫ xj+1/2

xj−1/2

(v̂nj (x, tn+1)− v̂nj (x, tn))dx+

∫ tn+1

tn
(f(v̂nj (x

−
j+1/2, t))− f(v̂nj (x

+
j−1/2, t)))dt = 0,

where we consider the usual notation x+ = lim
y→x+

x and x− = lim
y→x−

x. Using (10) and (12), we

get

∆x(vn+1
j − vnj ) +

∫ tn+1

tn
(f(v̂nj (x

−
j+1/2, t)− f(v̂nj (x

+
j−1/2, t)))dt = 0

At this point we note that the integral we need to compute in the previous equation is
trivial because the integrand is independent of t. This follows by using (13) and from the fact
that the solution of the Riemann problem at xj+1/2 is a similarity solution, constant along
each ray (x− xj+1/2)/(t− tn) = constant. Therefore we have:

vn+1
j = vnj − λ{f(v̂R(0−; vnj , vnj+1))− f(v̂R(0

+; vnj−1, v
n
j ))}.

Since the function x −→ f(v̂R(x;ul, ur)) is continuous at the origin because of the Rankine-
Hugoniot conditions, Godunov’s method can be written in the conservative form

vn+1
j = vnj − λ{f(v̂R(0; vnj , vnj+1))− f(v̂R(0; v

n
j−1, v

n
j ))}. (14)
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and its numerical flux is given by

g(u, v) = f(v̂R(0;u, v)). (15)

3.2 Van Leer’s method

Since the first and thirst steps of Godunov’s methods are of a numerical nature, they can
be modified without influencing the physical input, for instance by replacing the piecewise
constant approximation by a piecewise linear variation inside each cell, leading to the definition
of second order space-accurate schemes, as van Leer’s method. However, the straightforward
replacement of the first-order scheme by appropriate second-order accurate formulae leads
to the generation of oscillations around discontinuities. To overcome this limitation and
achieve the goal of oscillation-free, second-order schemes able to represent accurately shock
and discontinuities, there are introduced non linear components. Non linear discretizations
imply that the schemes will be non linear even when applied to linear equations. This concept
was introduced initially by van Leer under the form of limiters, which control the gradient of
the computed solution such as to prevent the appearance of overshoots or undershoots.

Consequently, we study van Leer’s method as an example of second-order slope limiter
methods. The three main steps of van Leer’s scheme are the following ([3, 4, 5]):

1. A reconstruction step which consists in constructing a piecewise linear function v̂ from
given cell averages vnj ,

v̂n(x) = vnj + (x− xj)
Sn
j

∆x
, xj−1/2 < x < xj+1/2, (16)

where Sn
j is a slope on the jth cell wich is based on the numerical values at time tn.

Note that taking Sn
j = 0 for all j and n recovers Godunov’s method.

2. An evolution step, which involves either an exact or an approximate Riemann solver.
One solves







∂

∂t
w +

∂

∂x
f(w) = 0 x ∈ R, tn ≤ t ≤ tn+1

w(x, tn) = v̂n(x)
(17)

which gives w(·, tn+1).

3. A cell-averaging step, which gives vn+1
j , by projecting the solution w(x, tn+1) onto the

piecewise constant functions

vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

w(x, tn)dx. (18)

The cell average of v̂n(x) over [xj−1/2, xj+1/2] is equal to vnj for any choice of Sn
j . Since

steps 2 and 3 are also conservative, the overall method is conservative for any choice of Sn
j .

Provided we assume some convenient CFL condition so that the waves issued from the
points xj−1/2 and xj+1/2 do not interact, the solution is obtained by juxtaposition of local



Numerical Methods for the solution of Hyperbolic Conservation Laws 14

Riemann problems. In order to derive a more explicit form of the scheme, we integrate the
equation (17) over a cell (xj−1/2, xj+1/2)× (tn, tn+1),

∫ tn+1

tn

∫ xj+1/2

xj−1/2

(
∂

∂t
w +

∂

∂x
f(w))dxdt = 0.

We obtain

∫ xj+1/2

xj−1/2

(w(x, tn+1)− w(x, tn))dx+

∫ tn+1

tn
(f(w(xj+1/2, t))− f(w(xj−1/2, t)))dt = 0

since the flux is continuous, and then by (18)

∆x(vn+1
j − vnj ) +

∫ tn+1

tn
(f(w(xj+1/2, t))− f(w(xj−1/2, t)))dt = 0

We are left with the evaluation of the numerical flux

gnj+1/2 =
1

∆t

∫ tn+1

tn
f(w(xj+1/2, t))dt.

Using the midpoint rule, we write

1

∆t

∫ tn+1

tn
f(w(xj+1/2, t))dt = f(w(xj+1/2, tn +

∆t

2
)) +O(∆t2).

A way for approximating f(w(xj+1/2, tn + ∆t
2 )) is given by a predictor-corrector scheme.

Following an idea of Hancock, we define the updated values v
n+1/2
j+1/2,± at time tn + ∆t

2 by



















v
n+1/2
j+1/2,− = vnj+1/2,− − ∆t

2∆x
(f(vnj+1/2,−)− f(vnj−1/2,+)),

v
n+1/2
j+1/2,+ = vnj+1/2,+ − ∆t

2∆x
(f(vnj+3/2,−)− f(vnj+1/2,+)),

where















vnj+1/2,− = v̂(x−j+1/2) = vnj +
Sn
j

2
,

vnj+1/2,+ = v̂(x+j+1/2) = vnj+1 −
Sn
j+1

2
,

Then, we solve the Riemann problem at the point xj+1/2 with piecewise constant initial data

v
n+1/2
j+1/2,±



















∂

∂t
ŵ +

∂

∂x
f(ŵ) = 0

ŵ(x, 0) =







v
n+1/2
j+1/2,− x < xj+1/2

v
n+1/2
j+1/2,+, x > xj+1/2
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whose solution is noted as vR(
x− xj+1/2

t
; v

n+1/2
j+1/2,−, v

n+1/2
j+1/2,+).

We replace

w(xj+1/2, t)

by

vR(0; v
n+1/2
j+1/2,−, v

n+1/2
j+1/2,+),

and thus we take

gnj+1/2 = f(vR(0; v
n+1/2
j+1/2,−, v

n+1/2
j+1/2,+)).

It remains to solve the problem of definition of Sn
j . In fact the main difficulty in obtaining

a slope limiter method is the choice of the slopes Sn
j . For example, it can be shown that for

the linear advection equation with f(u) = au and a > 0, if Sn
j = vnj+1 − vnj and the advection

equation is solved exactly in step 2, then the method reduces to the Lax-Wendroff method
(see [8]). This illustrates that it is possible to obtain second order accuracy by this approach.
The oscillations which arise with Lax-Wendroff method can be interpreted geometrically as
being caused by a poor choice of slopes. In fact oscillations are created when the slope in a
cell becomes larger than the difference of adjacent mean values. Hence, in order to define a
scheme without overshoots around discontinuities one should avoid excessive large gradients.
Therefore we have to make a controll at each time step and within each cell, in such a way as
to keep the gradients within the proper bounds. So, we prevent the generation of oscillations
by acting on their production mechanism and we introduce nonlinear correction factors, the
limiters.

In this way, the method is TVD (Lax-Wendroff scheme is not TVD).

Briefly, we report the definition of a total variation diminishing (TVD) numerical method:

Definition 3.3 A numerical method to solve hyperbolic conservation laws is called total vari-
ation diminishing if

+∞
∑

j=−∞

|vn+1
j+1 − vn+1

j | ≤
+∞
∑

j=−∞

|vnj+1 − vnj |

The advantage of a TVD scheme stems from the fact that, whenever stability is assured, it is
free of numerical oscillations.

To obtain a slope limiter we can set

Sn
j = (vnj+1 − vnj )Φ

n
j

where Φj = Φ(θnj ) and θnj represents the ratio of consecutive gradients,
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θnj =
vnj − vnj−1

vnj+1 − vnj
,

while Φ is a limiter function, defined to obtain a TVD method. We set:

Φ(θ) = 0 for θ ≤ 0.

With these assumptions, we have the sufficient condition to obtain a TVD scheme:

0 ≤ Φ(θ) ≤ 2θ.

To obtain second order accuracy, additional conditions are to be imposed , for example, the
function Φ must also pass smoothly through the point Φ(1) = 1. Various limiter functions
have been defined in the literature. Actually, we consider three limiter functions:

• van Leer’s limiter:

Φ(θ) =
|θ|+ θ

1 + |θ|

• minmod limiter that represents the lowest boundary of the second-order TVD region:

Φ(θ) =

{

min(θ, 1) if θ > 0
0 if θ ≤ 0

It is a particular case of the minmod function, defined as the function that selects the
number with the smallest modulus from a series of numbers when they all have the same
sign, and zero otherwise. For two arguments:

minmod(x, y) =











x if |x| < |y| and xy > 0
y if |x| > |y| and xy > 0
0 if xy < 0

• the superbee limiter, that represents the upper limit of the second-order TVD region
and has been introduced by Roe:

Φ(θ) = max[0,min(2θ, 1),min(θ, 2)].

4 Numerical results

Now, we investigate how the previously analyzed methods (Godunov and van Leer’s schemes)
behave in practice when applied to different model problems. We have chosen the linear ad-
vection equation, which serves as a simple model for contact discontinuities in fluid dynamics,
and Burgers’ equation to study how the methods treat shocks. To apply any of the methods in
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a finite domain, we are immediately faced with the problem of how to discretize the equations
at the boundary points.

First of all, we impose periodic boundary conditions,

u(xmin, t) = u(xmax, t),

so that we use periodicity conditions to provide the extra needed values for implement Go-
dunov and van Leer’s schemes. In this way we overcome the difficulty that arise near the
boundaries ([3, 4, 5]).

Example 1

We begin by studying the simple hyperbolic equation

ut + ux = 0 x ∈ [−1, 1] t ≥ 0
u(x, 0) = u0(x) = sin(2πx) x ∈ [−1, 1]

Its exact solution is the wave u(x, t) = sin(2π(x − t)), constant along the characteristics
x− t = constant, and with speed of propagation equal to dx/dt = 1.

In this case the CFL number is λ = ∆t/∆x , because max|f ′(u)| = 1.

We calculate the solution at time t = 2 with a CFL number equal to λ = 0.5, with
∆t = 2/200 and ∆x = 2/100. Figure 5 shows numerical solutions to this problem computed
with Godunov and van Leer’s method: the results are plotted at time t = 2 along with exact
solution. It is evident that Godunov’s method gives very smeared solutions because it is a
first order method, while van Leer’s method well approximates exact solution. Also, we can
compare the specific effects of the limiters on smooth solutions: the minmod limiter reduces
locally the accuracy of the solution around the extrema and the behavior is close to a first
order method, while superbee limiter flattens the maxima. The overcompressive property of
superbee limiter is not too adequate for smooth profiles. Instead, the van Leer limiter has
properties between minmod and superbee limiters’ properties.

Example 2

To simulate contact discontinuities we again solve the linear advection equation ut+ux = 0,
with initial condition u0(x) periodic of period 2 defined on the interval [−1, 1] as

u0(x) =



























1 −1 ≤ x ≤ −0.75
0 −0.75 < x < −0.25
1 −0.25 ≤ x ≤ 0.25
0 0.25 < x < 0.75
1 0.75 ≤ x ≤ 1

We solve this problem at time t = 2 with λ = 0.5, by setting ∆t = 2/200 and ∆x = 2/100.
The expected behavior of numerical methods considered is plotted in figure 6.

Godunov’s scheme shows excessive diffusion, while van Leer, minmod and superbee limiters
generate monotone profiles. The minmod limiter, however, is still too diffusive.

Example 3
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Figure 5: Example (1): numerical (−·−) and exact (−) solution with λ = 0.5 and ∆x = 2/100
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As nonlinear test problem with periodic initial and boundary conditions, we consider
inviscid Burgers’ equation (6) on the interval [0, 2π] and t ≥ 0, with periodic boundary
conditions u(0, t) = u(2π, t) and initial condition u0(x) = 5/2 + sinx. As t increases from
the origin, u0(x) is transported with unit speed to the right and simultaneously evolves into
a function with an increasingly sharper profile which, after a while, is discontinuous: a shock
appears. Figure 7 displays the initial condition. The evolution of the solution of this Burgers’
equation at times t = 0.2, 0.4, 0.8, 1, 1.2, 1.4, 1.6, 2 is plotted in Figure 8 by applying
Godunov’s method, while in Figure 9 solution obtained by applying van Leer’s method with
van Leer limiter is displayed. We have chosen van Leer limiter, because its behavior is between
the minmod and superbee limiters’ behavior. For both method we have chosen ∆t = 0.002
and ∆x = 2π/100.

We see how a smooth solution degenerates into a discontinuous one. But Godunov’s method
tends to smooth the profile while van Leer’s method is more efficient to control the shock.

If we have more general initial conditions, we have to study how many conditions of
physical origin are to be imposed at a given boundary and how many numerical conditions
are to be defined at the boundaries. A particular attention is needed to the study of the
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Figure 6: Example (2): numerical (−·−) and exact (−) solution with λ = 0.5 and ∆x = 2/100
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boundary treatment on the stability and accuracy of the basic scheme, since stable schemes
can be strongly affected by unadapted boundary treatments, leading to possible instability of
the complete scheme or to the reduction of unconditional to conditional stability. Whit regard
to accuracy, an important theorem by Gustafsson (see [5]) proves that, for linear equations,
the boundary scheme can be one order lower than the basic scheme without reducing the
global order of accuracy of the complete scheme.

So we consider the scalar conservation law

ut + (f(u))x = 0, x ∈ [xmin, xmax], t > 0
u(x, 0) = u0(x),

and we prescribe u(xmin, t) = g(t) if the characteristic is ingoing. that is, if f ′ > 0, otherwise
we impose u(xmax, t) = g(t). For example, if we consider the linear advection equation
ut + aux = 0, if a > 0, the characteristics are leaving from the boundary x = xmin, thus
coming into the domain. Therefore, we prescribe the solution at the boundary x = xmin,
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Figure 7: Example (3). Initial condition
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Figure 8: Example (3). Evolution in time by Godunov’s method
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Figure 9: Example (3). Evolution in time by van Leer’s method with van Leer limiter
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u(xmin, t) = g(t), t > 0.

Instead, if a < 0 we have

u(xmax, t) = g(t), t > 0.

Therefore, when we consider the numerical scheme, at most one of the boundary values is
known by analytical boundary conditions. There are some problems with numerical approxi-
mations of values near the boundary. Let us divide the space interval [xmin, xmax] into N − 1
cells of length ∆x, ranging from j = 1 at x = xmin to j = N at x = xmax, and consider a 3-
point linear conservative scheme as Godunov’s scheme for approximating the simple advection
equation with a > 0.

The formula is:
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vn+1
j = vnj − λ(gn

j+ 1

2

− gn
j− 1

2

),

with gn
j+ 1

2

= g(vnj , v
n
j+1), and j varying from 2 toN−1, since vn1 is given by boundary condition,

vn1 = g(tn), and the formula cannot be write for j = N because it requires values outside of the
computational domain. In the same way, if we use a 5-point scheme, as the van Leer’s scheme,
we still set vn1 = g(tn), and to compute vn2 and vnN−1, we need the auxiliary values vn0 and vnN ,
vnN+1 respectively. Various methods can be applied in order to implement numerical boundary
conditions. We consider schemes based on extrapolations of the internal variables toward the
boundary. In particular, we consider the following formulae (we write the conditions for an
outlet boundary j = N . The transposition to inlet conditions is straightforward, replacing
j = N by j = 1, j = N − 1 by j = 2 and so on):

• space extrapolation

– zero-order extrapolation: vn+1
N = vn+1

N−1

– first-order extrapolation: vn+1
N = 2vn+1

N−1 − vn+1
N−2

• space-time extrapolation

– zero-order: vn+1
N = vnN−1

– first order in space/zero order in time: vn+1
N = 2vnN−1 − vnN−2

– first order in space and time: vn+1
N = 2vnN−1 − vn−1

N−2

• time extrapolation

– zero order: vn+1
N = vnN

– first order: vn+1
N = 2vnN − vn−1

N

For the 5-point scheme, one can take for vnN and vnN+1 the same formula, i.e., the same
coefficients in the extrapolation scheme, for example

vn+1
N = 2vn+1

N−1 − vn+1
N−2 and

vn+1
N+1 = 2vn+1

N − vn+1
N−1.

In our numerical experiments, we consider the space-time zero order extrapolation in Go-
dunov’s method, while, for van Leer’s scheme, we use first-order in space and time formula to
obtain vn+1

N and vn+1
N+1 for n ≥ 1. For n = 0 we consider the first order in space and zero order

in time formula, because we start by knowing only the initial values for t = t0 = 0. For the
auxiliary value vn+1

0 we utilize a zero-order space extrapolation. The theory of Gustafsson
guarantees stability and accuracy of both methods.

Example 4

As first example of linear advection equation, ut + ux = 0, with non periodic initial
conditions, we examine the following initial condition:
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Figure 10: Example (4): numerical (−·−) and exact (−) solution with λ = 0.5 and ∆x = 0.04
at time t = 2
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u(x, 0) = u0(x) =

{

sin(πx) 0 ≤ x ≤ 2
0 otherwise

This test case allows us to test the diffusion and dispersion properties of the schemes with
numerical boundary conditions. As in the case of periodic initial and boundary conditions of
example (1), the specific effects of the Godunov’s method and of the various limiters applied
to van Leer’s scheme can be seen from a comparison of Figure 10 where we plot the solution
at time t = 2: Godunov’s scheme presents very smeared solution while the specific effects of
the limiters vary from the smoothness of minmod limiter to an overcompressive property of
superbee limiter.

Example 5

To study the behavior on shock and contact discontinuities we study the linear advection
equation of a square wave. In this case we start by the initial condition:
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Figure 11: Example (5) numerical(− ·−) and exact(−) solution with λ = 0.5 and ∆x = 0.04
at time t = 2

0.0 2.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Godunov’s scheme

0.0 2.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) van Leer’s scheme
van Leer limiter

0.0 2.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) van Leer’s scheme
minmod limiter

0.0 2.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) van Leer’s scheme
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u(x, 0) =

{

1 −0.5 ≤ x ≤ 0.5
0 otherwise

In the numerical experiment the space variable x varies in the interval [−1, 9], with ∆x =
0.04 and ∆t = 0.02. Figure 11 compares the linear advection of a square wave after 100 time
steps, at time t = 2, at a CFL number of 0.5. Godunov’s scheme shows excessive diffusion.
The minmod limiter is still too diffusive, while the superbee limiter produces excellent results
and the van Leer limiter has a behavior between the previous two.

Example 6

As non linear test problem we consider Burgers’ equation where shock formation and
propagation is provided by the time evolution of a single sinusoidal wave profile:

u(x, 0) =

{

5 sinx 0 ≤ x ≤ π
0 x < 0 and x > π
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Figure 12: Example (6). Initial condition
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The shock moves at a speed s =
√
Bt and has a jump [u] =

√

B
t , where B/2 is the area under

the sinusoidal curve, which remains constant, that is

B = 2

∫ π

0
u(x, 0)dx = 20.

The expansion part takes on a linear shape asymptotically:

u ≈ x

t

when 0 < x <
√
Bt. We illustrate the evolution in time in Figure 13, starting by an initial

configuration as in Figure 12. The numerical solution for the different methods is obtained
with a gridsize ∆x = 0.04 and ∆t = 0.004, at time t = 5. In this case s = 10 and the jump is
equal to 2.

Example 7

Another simple nonlinear test on Burgers’ equation is given by considering a Riemann
problem, that is, the initial condition is:

u(x, 0) =

{

1 x < 0
0 x > 0

Therefore, we have a shock propagating at speed s = 1/2 with unmodified intensity [u] = 1.
We plot the numerical solution at time t = 4, with ∆x = 0.04 and ∆t = 0.02. As expected,
Godunov’s method presents an oscillatory behavior.

Example 8

As last example we consider the Riemann problem whose solution is a rarefaction wave:

u(x, 0) =

{

0 x < 0
1 x > 0



Numerical Methods for the solution of Hyperbolic Conservation Laws 26

Figure 13: Example (6): numerical solution with λ = 0.1 and ∆x = 0.04 at time t = 5

0.0 2.0 4.0 6.0 8.0 10.0
0.0

0.5

1.0

1.5

2.0

(a) Godunov’s scheme

0.0 2.0 4.0 6.0 8.0 10.0
0.0

0.5

1.0

1.5

2.0

(b) van Leer’s scheme
van Leer limiter

0.0 2.0 4.0 6.0 8.0 10.0
0.0

0.5

1.0

1.5

2.0

(c) van Leer’s scheme
minmod limiter

0.0 2.0 4.0 6.0 8.0 10.0
0.0

0.5

1.0

1.5

2.0

(d) van Leer’s scheme
superbee limiter

The expected behavior for the methods considered is displayed in Figure 15.
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Figure 14: Example (7): numerical (−·−) and exact (−) solution with λ = 0.5 and ∆x = 0.04
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Figure 15: Example (8): numerical (−·−) and exact (−) solution with λ = 0.5 and ∆x = 0.04
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Applications, Ellipses, Paris (1991).

[4] E. Godlewski, P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conserva-
tion Laws, Springer-Verlag New York, Inc. (1996).

[5] B. Gustaffson, H.O. Kreiss, J. Oliger, Time Dependent Problems and Difference Methods,
John Wiley & Sons, Inc. (1995).

[6] C. Hirsch, Numerical Computations of Internal and External Flows, Vol.2, John Wiley & Sons,
Inc. New York(1988).



Numerical Methods for the solution of Hyperbolic Conservation Laws 29

[7] E. Hopf, The partial differential equation ut + uux = δuxx, Commun. Pure Appl. Math. 3,
201-230 (1950).

[8] R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics,
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