
Abstract

In this paper we analyze a class of approximate constraint preconditioners in the ac-

celeration of Krylov subspace methods fot the solution of reduced Newton systems

arising in optimization with interior point methods. We propose a dynamic sparsi-

fication of the Jacobian matrix at every stage of the interior point method. Spectral

analysis of the preconditioned matrix is performed and bounds on its non-unit eigen-

values are provided. Preliminary computational results are encouraging.

Keywords: interior-point methods, iterative solvers, preconditioners, approximate Ja-

cobian.

1 Introduction

In this paper we are concerned with the solution of large scale minimization problems

subject to equality constraints, via interior point methods with iterative solvers. When

minimization problems subject to equality constraints are considered, each iteration

k of an interior point method requires the following linear system of equations to be

solved

Hkx = b where Hk =

[

Qk AT

A

]

, (1)

where Qk ∈ Rn×n is the Hessian of Lagrangian and A ∈ Rm×n is the Jacobian

of constraints. The matrix Qk arising in interior point applications has form Qk =
Q0 + Θk, where diagonal scaling matrix Θk ∈ Rn×n with strictly positive elements

(due to the barrier terms for primal variables).

There has been growing interest in recent years in the use of iterative methods to

solve system (1) arising in optimization context. This is because certain large in-

1

Paper 34

Inexact Jacobian Constraint Preconditioners in
Optimization

L. Bergamaschi1, M. Venturin2 and G. Zilli1
1 Department of Mathematical Methods and Models for Scientific Applications
 University of Padua, Italy
2Department of Computer Science
 University of Verona, Italy

©Civil-Comp Press, 2010
Proceedings of the Seventh International Conference
on Engineering Computational Technology,
B.H.V. Topping, J.M. Adam, F.J. Pallarés,
R. Bru and M.L. Romero, (Editors),
Civil-Comp Press, Stirlingshire, Scotland

stances of (1) defy direct methods (the inverse representation of the matrix involved

requires prohibitive memory resources and cannot be computed efficiently). A variety

of preconditioners have been proposed for such matrices, notably [3, 7, 8, 9] to men-

tion a few. They have a common feature of constructing the approximation to (1) by

simplifying its upper left block, namely by applying the preconditioner of the form

Pk =

[

Dk AT

A

]

. (2)

Usual choices for matrix Dk are to keep it block-diagonal or diagonal. The latter situa-

tion has been studied for example in [3]: this choice has an advantage because it allows

for further reduction of the preconditioner P to the form of normal equations (Schur

complement) where a reduced system of form AD−1AT is computed. The Hessian

matrix Q cannot be approximated by anything simpler than a diagonal matrix. Con-

sequently, the factorization of P (with a diagonal D) determines the least expensive

constraint preconditioner among those preconditioners which “respect” constraints of

the optimization problem. However, in certain situations such a preconditioner is still

too expensive to compute.

In [2, 4] the following form of the preconditioner is proposed:

P̃k =

[

Dk ÃT

Ã

]

, (3)

where Dk = diag(Qk) and Ã is a suitable approximation of the Jacobian matrix A

Here we propose to compute dinamically the approximation to the Jacobian, namely

we use

P̃k =

[

Dk ÃT
k

Ãk

]

, (4)

i. e. we drop dynamically the elements from the ith row of AT
k depending on the

magnitude of the corresponding element of diagonal matrix Dk.

Dropping some of the elements in the Jacobian matrix A produces a significant

reduction of the fill-in of the Cholesky factor of the preconditioner, thus speeding-up

the cost of a single iteration of the Krylov subspace method of choice.

A spectral analysis is performed, which show that the eigenvalues of the precondi-

tioned matrix are bounded in terms of the norm of two matrices that measure the error

introduced by approximating Qk with Dk and A by Ãk.

Some numerical results onto a number of large quadratic problems demonstrate

that the new approach is an attractive alternative to direct approach and to exact con-

straint preconditioners. The paper is organised as follows. In Section 2 we provide

the spectral analysis of the preconditioner. In Section 3 we illustrate the behaviour

of the preconditioner on a class of quadratic programming problems. In Section 4 is

presented the dynamic dropping of the Jacobian matrix adopted. Finally, in Section 5

we give our conclusions.

2

2 Spectral Analysis

Following [2] we define E = A − Ã, rank(E) = p and denote as σ̃1 the smallest

singular value of ÃD−1/2. Further we introduce two error terms:

eQ = ‖EQ‖ = ‖D−1/2QD−1/2 − I‖ and eJ =
‖ED−1/2‖
σ1(ÃD−1/2)

(5)

which measure the errors of Hessian and Jacobian approximations, respectively. The

distance of the complex eigenvalues from one (τ = λ − 1) will be bounded in terms

of these two quantities.

Theorem. Assume A and Ã have maximum rank. If the eigenvector is of the form

(0, y)T then the eigenvalues of P̃−1H are either one (with multiplicity at least m − p)

or possibly complex and bounded by |τ | ≤ eJ . Corresponding to eigenvectors of the

form (x, y)T with x 6= 0 the eigenvalues are

1. equal to one (with multiplicity at least m − p), or

2. real positive and bounded by

λmin(D
−1Q) ≤ λ ≤ λmax(D

−1Q), or

3. complex, satisfying

|τR| ≤ eQ + eJ (6)

|τI | ≤ eQ + eJ , (7)

where τ = τR + iτI .

Proof. The eigenvalues of P̃−1H are the same as those of P̄−1H̄ where P̄ = DP̃D
and H̄ = DHD and

D =

[

D−1/2 0
0 I

]

They must satisfy

{

Ku + BT y = λu + λBT y − λF T y

Bu = λBu − λFu
. (8)

where K = D−1/2QD−1/2, B = AD−1/2, F = ED−1/2, u = D1/2x. The eigen-

value problem can also be stated, setting B̃ = (A−E)D−1/2 = B−F and τ = λ−1,

{

τu + τB̃T y = (K − I)u + F T y

τB̃u = Fu
. (9)

Let us observe that K − I and F are the errors of approximation of the Hessian and

Jacobian in (3), respectively.

3

We now analyse a number of cases depending on u and y.

1. u = 0 Every vector of the form

(

0
y

)

where y is an eigenvector of the gener-

alized eigenproblem

BBT y = λBB̃T y

is the eigenvector of (8) corresponding to λ. Since rank(E) = p (hence rank(F) = p),

among those vectors y there are m − p satisfying F T y = 0. The first equation of (8)

reads

BT y = λBT y

so that eigenvector

(

0
y

)

is associated to the unit eigenvalue.

We can bound the remaining such eigenvalues in terms of ‖F‖ using again the first

equation of (9) as

|τ | =
‖F T y‖
‖B̃T y‖

≤ ‖F‖ ‖y‖
‖B̃T y‖

≤ ‖F‖
σ̃1

= eJ . (10)

2. u 6= 0 There are at least m − p linearly independent vectors u satisfying Fu = 0
and Bu 6= 0. For such vectors the second equation of (8) reads

Bu = λBu

giving again unit eigenvalues.

Let us consider now the most general case where Bu 6= 0 and Fu 6= 0.

Let us multiply the first equation of (8) by uH and the second one by yH . We obtain

the following system

{

uHKu + uHBT y = λuHu + λuHB̃T y

yHBu = λyHB̃u
. (11)

We shall consider two possibilities: (a) real eigenvalues and (b) complex eigenvalues.

(a) real eigenvalues If λ ∈ R, subtracting the transpose of the second equation

from the first one, and using λ = λ̄, (u, y)H = (u, y)T , we obtain

λmin(K) ≤ λ =
uT Ku

uT u
≤ λmax(K). (12)

(b) complex eigenvalues To bound the complex eigenvalues we write in short

equation (9) as

τN

(

u

y

)

= M

(

u

y

)

4

and observe that matrix N−1 can be decomposed using the Cholesky factorization

LLT of the symmetric positive definite matrix B̃B̃T .

N−1 =

(

I B̃T

B̃ 0

)−1

=

(

I −B̃T L−T

0 L−T

)(

I 0
0 −I

)(

I 0

−L−1B̃ L−1

)

= UJUT

(13)

so that the eigenvalue problem is equivalent to

UT MUw = τJw, with

(

u

y

)

= Uw. (14)

It is useful to set R = L−1B̃ since it is easily found that ‖R‖ = 1. Since

UT MU =

(

I 0
−R L−1

)(

EQ F T

F 0

)(

I −RT

0 L−T

)

=

(

EQ F T

−REQ + L−1F −RF T

)(

I −RT

0 L−T

)

=

(

EQ −EQRT + F T L−T

−REQ + L−1F REQRT − L−1FRT − RF T L−T

)

we rewrite equation (14)
(

EQ −EQRT + F T L−T

−REQ + L−1F REQRT − L−1FRT − RF T L−T

)(

w1

w2

)

= τ

(

w1

−w2

)

.

(15)

Note that the diagonal blocks are symmetric. Now multiply (15) by wH thus obtaining

wH
1

EQw1 + wH
1

(−EQRT + F T L−T)w2 = τ‖w1‖2

(16)

wH
2

(−EQRT + F T L−T)T w1 + wH
2

REQRT w2 − 2<(wH
2

L−1FRT w2) = −τ‖w2‖2

Subtracting the two equations yields two equations for the real and the imaginary part

respectively (assuming ‖w‖ = 1).

wH
1

EQw1 − wH
2

REQRT w2 + 2<(wH
2

L−1FRT w2) = τR

2=(wH
1

(−EQRT + F T L−T)w2) = τI (17)

If, instead, we add together the two equations in (16) we get for the imaginary part

0 = τI

(

‖w1‖2 − ‖w2‖2
)

which gives for every complex eigenvalue ‖w1‖2 = ‖w2‖2 =
1

2
. Hence (17) provides

a bound for the real and imaginary part of τ in terms of eQ = ‖EQ‖ and eJ .

|τR| ≤ |wH
1

EQw1| + |wH
2

REQRT w2| + 2|wH
2

L−1FRT w2|
≤ ‖EQ‖

(

‖w1‖2 + ‖w2‖2
)

+ 2‖w2‖2 ‖L−1FRT‖ = eQ + eJ

|τI | ≤ 2‖w1‖‖w2‖‖(−EQRT + F T L−T)‖ ≤ eQ + eJ (18)

5

Our new proof has followed the ideas from the paper of Benzi and Simoncini [1].

The major difference is that in [1] the preconditioner uses the exact Jacobian A, while

our analysis applies to the case when the approximate Jacobian Ã is used.

In the special case of linear programming or separable quadratic programming, the

Hessian of Lagrangian Q is a diagonal matrix, hence the preconditioner uses exact

Hessian D = Q. The analysis simplifies in this case.

nonseparable case separable case

case eigenvector Eig bound Eig bound

1. u = 0, F T y = 0 R λ = 1 R λ = 1
1. u = 0, F T y 6= 0 R/C |λ − 1| ≤ eJ R/C |λ − 1| ≤ eJ

2. u 6= 0, Bu 6= 0, Fu = 0 R λ = 1 R λ = 1
2. u 6= 0, Bu 6= 0, Fu 6= 0 R λ ∈ [λmin(K), λmax(K)] R λ = 1

3. u 6= 0, Bu 6= 0, Fu 6= 0 C

{

|<(λ) − 1| < eQ + eJ

|=(λ) − 1| < eQ + eJ

C |λ − 1| ≤ eJ

Table 1: Types of eigenvalues in P̃−1H . R stands for real and C for complex eigen-

values.

Corollary. Assume that Ã has maximum rank. The eigenvalues of P̃−1H are either

one or bounded by

|λ − 1| ≤ eJ .

Proof. The eigenvalues of P̃−1H can be characterised in the same way as in Theo-

rem 2 for the case u = 0 (they are either unit or bounded by |τ | < eJ). If u 6= 0,

the real eigenvalues must satisfy (12) with K = I , from which λ = 1; while for the

complex ones, using EQ = 0, the first equation of (16) simplifies to

|τ | =
|wH

1
F T L−T w2|
‖w1‖2

≤ ‖w1‖ eJ ‖w2‖
‖w1‖2

= eJ .

We summarise the classification of eigenvalues of preconditioned matrix in Table 1.

2.1 Bounds on complex eigenvalues

In this section we give further bounds on the modulus and real and imaginary part of

the complex eigenvalues.

Theorem. If x 6= 0 the complex eigenvalues are bounded by

|λ − 1| ≤ eQ +
1 +

√
5

2
eJ (19)

6

Proof. We refer again to system (9). Let us now decompose u into u = u0 + u⊥,

where B̃u0 = 0 and uT
0
u⊥ = 0, and set p = u⊥ + B̃T y.

‖F T y‖ = ‖F T‖ ‖y‖
‖B̃T y‖

‖B̃T y‖ ≤ ‖F T‖
σ1(B̃)

(‖p‖ + ‖u⊥‖)

Taking the norms, the first equation of (9) reads

|τ | ≤ ‖(K − I)u‖ + ‖F T y‖
‖u0‖ + ‖u⊥ + B̃T y‖

(20)

≤ ‖(K − I)u‖
‖u0‖ + ‖p‖ +

‖F T y‖
‖u0‖ + ‖p‖ (21)

≤ eQ
‖u0‖ + ‖u⊥‖
‖u0‖ + ‖p‖ + eJ

‖p‖ + ‖u⊥‖
‖u0‖ + ‖p‖ (22)

= eJ +
(eQ − eJ)‖u0‖ + (eQ + eJ)‖u⊥‖

‖u0‖ + ‖p‖ = b(‖p‖) (23)

Function b(‖p‖) is

(a1) decreasing if eQ > eJ

(b1) decreasing if eQ ≤ eJ and t =
‖u⊥‖
‖u0‖

>
eJ − eQ

eQ + eJ

(b2) increasing if eQ ≤ eJ and t ≤ eJ − eQ

eQ + eJ

so that if eQ > eJ then b(‖p‖) ≤ b(0) = eQ(1 + t) + eJt ≡ f(t). If eQ ≤ eJ :

b(‖p‖) ≤

b(0) = eQ(1 + t) + eJt if t >
eJ − eQ

eQ + eJ

b(∞) = eJ if t ≤ eJ − eQ

eQ + eJ

≡ f(t)

From the second equation of (9), we obtain

|τ | ≤ ‖F‖‖u0 + u⊥‖
‖B̃u⊥‖

≤ ‖F‖‖u0 + u⊥‖
σ1(B̃)‖u⊥‖

≤ ‖F‖
σ1(B̃)

(

1 +
‖u0‖
‖u⊥‖

)

= eJ

(

1 +
1

t

)

≡ g(t).

Since τ must satisfy |τ | ≤ f(t) and |τ | ≤ g(t) for every t, and given that f(t) is

nondecreasing while g(t) is decreasing, also |τ | ≤ f(t̄) where t̄ is s.t. f(t̄) = g(t̄). The

intersection between f and g in the case eQ ≤ eJ can take place only if t >
eJ − eQ

eQ + eJ

(case b1) since ej < g(t). Therefore f(t) = eQ(1 + t) + eJt.

Now, setting z =
eJ

eQ

, we have that

f(t) = g(t) ⇐⇒ 1 + t + zt = z +
z

t
⇐⇒ t2(1 + z) + (1 − z)t − z = 0

7

then

t̄ =
z − 1 +

√
5z2 + 2z + 1

2(1 + z)

Now

|τ | < f(t̄) = eQ + (1 + z)t̄eQ = eQ +
1 + z

z
t̄eJ (24)

= eQ +
z − 1 +

√
5z2 + 2z + 1

2z
eJ ≤ eQ +

1 +
√

5

2
eJ . (25)

The last inequality follows observing that

h(z) =
z − 1 +

√
5z2 + 2z + 1

2z
=

1

2

(

1 − 1

z
+

√

5 +
2

z
+

1

z2

)

is an increasing function in (0, +∞) bounded by

√
5 + 1

2
.

3 Numerical results

To effectively compute the preconditioner P̃ we reduce the augmented system to the

normal equations ÃD−1ÃT , compute the Cholesky factorization

ÃD−1ÃT = L0D0L
T
0
,

and use:

P̃ =

[

D ÃT

Ã 0

]

=

[

I 0

ÃD−1 I

] [

D 0

0 −ÃD−1ÃT

] [

I D−1ÃT

0 I

]

=

[

I 0

ÃD−1 L0

] [

D 0
0 −D0

] [

I D−1ÃT

0 LT
0

]

. (26)

We have employed the iterative method QMRs [5], which is particularly well-suited

for symmetric indefinite systems. We have compared four alternative methods to solve

(1): direct approach as implemented in HOPDM [6], two variants of preconditioned

conjugate gradients using exact constraint preconditioners of form (2) as developed in

[3], and the new preconditioner P̃ by (26) in which approximate Jacobian Ã is used.

We have solved several problems from public domain collections of quadratic pro-

grams. To avoid reporting excessive numerical results, we have selected a subset of 7

representative quadratic programs for which we give detailed solution statistics. Prob-

lems sqp2500 * have been made available to us by Professor Hans Mittelmann.

Problems AUG3D* originate from CUTE library and can be retrieved for example

from http://www.sztaki.hu/˜meszaros/public ftp/qpdata/cute/.

8

3.1 Results with constant Ã

We start the analysis from the statistics of problems used in our computations. In

Table 2 we report problem sizes m, n, the number of nonzero elements in matrix

A, the number of off-diagonal nonzero elements in Q and in the factorization of the

complete matrix H , nnz(L).

problem m n nnz(A) nnz(Q) nnz(L)

AUG3D 15625 68053 112981 0 2446430

AUG3DQP 15625 68053 85169 0 1507295

AUG3DC 27000 103107 181320 0 5269968

AUG3DCQP 27000 103107 181286 0 5336157

sqp2500 1 2000 4000 52321 738051 3124093

sqp2500 2 2000 4000 52319 14345 3504910

sqp2500 3 4500 7000 115073 738051 3219994

Table 2: Values of m, n, nonzeros in A, off-diagonal nonzeros in Q and in the trian-

gular factors L for augmented matrix nnz(L).

The iterative methods QMRs and PCG have been stopped using a tolerance tol

on the relative residual
‖rk‖
‖b‖ ≤ tol = 10−2, 10−4 and a limit of iterations itmx

∈ [50, 100].

All tests have been run on an Intel Xeon PC 2.80 GHz with 2 GB RAM. We have

used the pure FORTRAN version of the solver and we have compiled it with the g77

compiler with -O4 option. The CPU times are measured in seconds.

In the definition of preconditioner P̃ we used the following dropping rule to deter-

mine matrix E:

eij =

{

aij if |aij| < drop ‖Aj‖ AND |i − j| > nb

0 otherwise

where with Aj we denote the jth column of A.

In other words, we drop an element from matrix A if it is below a prescribed tolerance

and outside a fixed band. The first requirement prevents ‖E‖ from becoming too large

with consequent going away of the eigenvalues from the unity (see the bound (10) in

Theorem 1). The second requirement attempts to control the fill-in of AAT and hence

of its Cholesky factor L.

Table 3 collects the results of HOPDM runs on all separable test examples for the

direct approach (factorization of H) and the QMRs (and PCG) iterative methods with

preconditioner P̃ with the optimal combination of parameters, namely itmx , tol ,

nb , drop , experimentally found after extensive testing.

Table 4 provides the same outcome on the sqp2500 * problems. For these tests,

we also report the performance of the PCG preconditioned P (“exact” preconditioner,

9

Problem AUG3D

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 62.58 2446430 13

QMRs (P̃) 100 1.e-2 100 1.0 11.49 89483 184 12 303

PCG (P̃) 100 1.e-2 100 1.0 16.83 89483 184 13 894

Problem AUG3DQP

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 12.14 1507295 12

QMRs (P̃) 100 1.e-2 10 1.0 3.25 69828 0 13 53

PCG (P̃) 100 1.e-2 10 1.0 2.65 69828 0 13 80

Problem AUG3DC

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 240.32 5269968 17

QMRs (P̃) 50 1.e-2 10 1.0 248.63 54966 2522599 34 519

PCG (P̃) 50 1.e-2 10 1.0 299.53 54966 2522599 29 2478

Problem AUG3DCQP

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 339.28 5336157 24

QMRs (P̃) 50 1.e-2 10 1.0 288.18 54966 2563585 39 590

PCG (P̃) 50 1.e-2 10 1.0 265.23 54966 2563585 25 2263

Table 3: Performance of the proposed preconditioner with optimal combination of the

parameters vs direct solver. Separable problems AUG3D*.

obtained by using Ã = A in (3) and (26), respectively). We report in Tables 3 and 4

the total CPU time, the fill-in of the Cholesky factor of the preconditioner, the number

of interior point iterations, Its, and the overall number of iterations in the iterative

solver, LinIt.

As for the separable problems, the iterative approach produces mixed results. For

some of them there is a significant reduction of the CPU time. On problems AUG3DC

and AUG3DCQP, however, dropping some elements from matrix A does not produce a

sufficient reduction of the fill-in of L. Hence, the cost of a single QMRs/PCG iteration

is comparable to that of the direct solution of the linear system.

Regarding the sqp2500 * problems, the situation is different. The QMRs pre-

conditioned with “best” P̃ outperforms direct solver as well as the PCG method.

The different behaviour of the proposed approach on the two classes of problems

may be put in connection with the nonzero pattern and values of the matrices involved.

In the AUG∗ problems, matrix A has a banded nonzero structure, moreover most of

its elements have the same absolute value. For such problems, our dropping strategy

tends to remove either a very small or a very large number of nonzero elements. In the

former case the preconditioner does not provide sufficient acceleration of the iterative

method, whilst in the latter the high density of the preconditioner factors weighs down

10

Problem sqp2500 1

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 167.52 3124093 15

PCG (P) 20 1.e-2 132.96 1909672 19 539

QMRs (P̃) 50 1.e-2 10 1.0 32.59 49390 41 18 1481

PCG (P̃) 50 1.e-2 100 1.0 38.43 51320 11303 18 2030

Problem sqp2500 2

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 206.32 3504910 16

PCG (P) 20 1.e-2 120.37 1909275 19 499

QMRs (P̃) 50 1.e-2 10 1.0 6.11 49413 37 20 1740

PCG (P̃) 50 1.e-2 100 0.5 5.45 51319 16125 18 2039

Problem sqp2500 3

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

direct 215.93 3216994 19

PCG (P) 20 1.e-2 1447.23 9874267 24 308

QMRs (P̃) 75 1.e-4 10 1.0 82.37 112034 50 24 3646

PCG (P̃) 50 1.e-2 100 1.0 68.72 107576 14153 31 3250

Table 4: Performance of the proposed preconditioner with optimal combination of

the parameters vs PCG preconditioned with P1 and P2 and the direct solver. Non-

separable quadratic problems sqp2500 *.

the cost of an iteration of the Krylov subspace method.

We also note that the PCG method gives convergence in all the test cases even

with the inexact preconditioner. In some cases (problems AUG3DQP, AUG3DCQP,

sqp2500 2, sqp2500 3) the PCG with preconditioner P̃2 also leads to the best

results in terms of total CPU time.

4 Selective computing of Ã

In this section we present some preliminary results obtained using a dinamyc dropping

in the Jacobian matrix A.

The idea is based observing that, at convergence, one of the following conditions

occurs

1. (primal variables) if xj ∈ B then we have xj → x̂j > 0 and sj → 0 and so

Θj → ∞, i.e. Θ−1

j → 0;

2. (non primal variables) if xj ∈ N then we have xj → 0 and sj → ŝj > 0 and so

Θj → 0, i.e. Θ−1

j → ∞;

11

where Θj =
xj

sj
, B denotes the set of the primal solution variables and N denotes the

non primal variables.

This means that at the convergence if the Θ−1

j > Θdrop (in the test we use Θdrop =
10−4) the j–column of the matrix A is less significant and can be removed from the

computation. Moreover, in order to avoid the computation of the preconditioner at

each iteration we have introduced a safety factor on the percent number of removed

columns (here we use 5%). In detail, we rebuild the preconditioner only if the current

number of removed columns, computed using the previous strategy, differs from a

percent value of the total number of columns.

As an example we consider the problem 25FV47. We report in Table 5 the same

parameters as in Table 2. The comparison with and without dinamic preconditioner is

reported in Table 6. These preliminary results are encouraging.

problem m n nnz(A) nnz(Q) nnz(L)

25FV47 820 1571 10464 59053 20296

Table 5: Values of m, n, nonzeros in A, off-diagonal nonzeros in Q and in the trian-

gular factors L for augmented matrix nnz(L).

Without dinamic rebuilding

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

QMRs (P̃) 100 1.e-2 700 0.05 6.35 28 20317 50 471

With dinamic rebuilding (no. of total rebuild = 16)

Data refer to the last preconditioner

solver itmx tol nb drop CPU nnz(E) nnz(L) Its LinIt

QMRs (P̃) 100 1.e-2 700 0.05 5.8 6800 11341 54 408

Table 6: Performance of the proposed preconditioner for the problem 25FV47.

5 Conclusions

We have provided in this paper the analysis of inexact constraint preconditioner for

equality constrained optimization problems. Dropping some of the elements in the

Jacobian matrix A produces a significant reduction of the fill-in of the Cholesky factor

of the preconditioner thus speeding-up the cost of a single iteration of the Krylov

subspace method of choice. The spectral analysis of the preconditioned matrix reveals

that a large number of eigenvalues are one or positive and bounded by those of D−1Q.

The distance of the remaining eigenvalues form unity is proven to be bounded in terms

of the norm of the dropping matrix E. Some numerical results onto a number of large

quadratic problems demonstrate that the new approach is an attractive alternative for

direct approach and for exact constraint preconditioners.

12

References

[1] M. BENZI AND V. SIMONCINI, On the eigenvalues of a class of saddle point

matrices, Numer. Math., 103 (2006), pp. 173–196.

[2] L. BERGAMASCHI, J. GONDZIO, M. VENTURIN, AND G. ZILLI, Inexact

constraint preconditioners for linear systems arising in interior point methods,

Comput. Optim. Appl., 36 (2007), pp. 136–147.

[3] L. BERGAMASCHI, J. GONDZIO, AND G. ZILLI, Preconditioning indefinite

systems in interior point methods for optimization, Computational Optimization

and Applications, 28 (2004), pp. 149–171.

[4] L. BERGAMASCHI, M. VENTURIN, AND G. ZILLI, Inexact constraint precon-

ditioners for optimization problems, in Proceedings of the Fifth Int. Conf. on

Engineering Comput. Technology. Paper # 89, B. H. V. Topping, G. Montero,

and R. Montenegro, eds., Civil-Comp Press, Stirlingshire, UK, (2006), pp. 1–10.

doi:10.4203/ccp.84.89

[5] R. W. FREUND AND N. M. NACHTIGAL, Software for simplified Lanczos and

QMR algorithms, Applied Numerical Mathematics, 19 (1995), pp. 319–341.

[6] J. GONDZIO, HOPDM (version 2.12) – a fast LP solver based on a primal-dual

interior point method, European Journal of Operational Research, 85 (1995),

pp. 221–225.

[7] N. I. M. GOULD, M. E. HRIBAR, AND J. NOCEDAL, On the solution of equal-

ity constrained quadratic problems arising in optimization, SIAM Journal on

Scientific Computing, 23 (2001), pp. 1375–1394.

[8] C. KELLER, N. I. M. GOULD, AND A. J. WATHEN, Constraint preconditioning

for indefinite linear systems, SIAM Journal on Matrix Analysis and Applications,

21 (2000), pp. 1300–1317.

[9] L. LUKŠAN AND J. VLČEK, Indefinitely preconditioned inexact Newton method

for large sparse equality constrained nonlinear programming problems, Numer-

ical Linear Algebra with Applications, 5 (1998), pp. 219–247.

13

