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Abstract. Issues of indefinite preconditioning of reduced Newton systems arising in optimization with interior point
methods are addressed in this paper. Constraint preconditioners have shown much promise in this context. However, there
are situations in which an unfavorable sparsity pattern of Jacobian matrix may adversely affect the preconditioner and make
its inverse representation unacceptably dense hence too expensive to be used in practice. A remedy to such situations is
proposed in this paper. An approximate constraint preconditioner is considered in which sparse approximation of the Jacobian
is used instead of the complete matrix. Spectral analysis of the preconditioned matrix is performed and bounds on its non-unit
eigenvalues are provided. Preliminary computational results are encouraging.
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1. Introduction. Interior point methods for linear, quadratic or nonlinear programming are the key
optimization methodology. Their theory [12] and implementation [1] is well understood. When quadratic or
nonlinear programming problems subject to equality constraints are tackled each iteration of interior point
method requires the following linear system of equations to be solved

Hx = b where H =

[

Q AT

A

]

,(1.1)

where Q ∈ Rn×n is the Hessian of Lagrangian and A ∈ Rm×n is the Jacobian of constraints. The matrix Q

arising in interior point applications has form Q = Q0 +Θ, where diagonal scaling matrix Θ ∈ Rn×n reflects
the presence of barrier terms for primal variables. We assume that Q0 and in consequence Q is positive
definite and A has full row rank.

Linear systems of this type appear commonly in partial differential equations where they are known as
the saddle point problems. A vast amount of literature exists which address the solution of such systems
in the context of differential equations. We draw readers attention to recent survey [2] which provides
a comprehensive discussion of these issues and guides through the literature on the subject. A common
practice in differential equations community is to solve saddle point problems with iterative methods.

There has been growing interest in recent years in the use of iterative methods to solve system (1.1)
arising in optimization context. This is because certain large instances of (1.1) defy direct methods (the
inverse representation of the matrix involved requires prohibitive memory resources and cannot be computed
efficiently). A variety of preconditioners have been proposed for such matrices, notably [4, 9, 10, 11] to
mention a few. They have a common feature of constructing the approximation to (1.1) by simplifying its
upper left block, namely by applying the preconditioner of the form

P =

[

D AT

A

]

.(1.2)

Usual choices for matrix D are to keep it block-diagonal or diagonal. The latter situation has been studied
for example in [4]: this choice has an advantage because it allows for further reduction of the precondi-
tioner P to the form of normal equations (Schur complement) where a reduced system of form AD−1AT

is computed. The Hessian matrix Q cannot be approximated by anything simpler than a diagonal matrix.
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Consequently, the factorization of P (with a diagonal D) determines the least expensive constraint precon-
ditioner among those preconditioners which “respect” constraints of the optimization problem. However, in
certain situations such a preconditioner is still too expensive to compute.

In this short note we look for a further simplification of the preconditioner: we replace Jacobian matrix
A with a (sparse) approximation Ã. Our approach goes along the direction of the work of Coleman and
Verma [5] who showed how to use the reduced preconditioned conjugate gradient method in this context.
In a recent paper Benzi and Simoncini [3] analyzed the class of saddle point preconditioners which avoid
constructing matrix AAT and use its approximation instead. In another recent paper Dollar and Wathen
[6] used preconditioners based on incomplete Schilders’ factorization.

We propose to use the preconditioner of the following form

P̃ =

[

D ÃT

Ã

]

,(1.3)

where D is an approximation of Q and Ã is an approximation of A. We extend the analysis of [4] to this
case and provide a complete characterisation of the spectrum of P̃−1H. Our findings can be summarised
as follows. Suppose both A and Ã have full rank m and the error of approximation E = A − Ã has rank
p, where 0 ≤ p ≤ m. The use of approximation of A allows for a presence of complex eigenvalues in the
preconditioned matrix. There are at most p complex eigenvalues and they are bounded. We derive a bound
which depends on the error of approximation E and the stability properties of approximation matrix Ã.
The bound is constructive and its interpretation helps to avoid numerical difficulties in the implementation
of the method. We have implemented the approach proposed in this note in HOPDM interior point solver
[8] and we have tested it on a class of quadratic programming problems.

The paper is organised as follows. In Section 2 we provide the spectral analysis of the preconditioner. In
Section 3 we illustrate the behaviour of the preconditioner on a class of quadratic programming problems.
Finally, in Section 4 we give our conclusions.

2. Spectral Analysis. We consider preconditioner (1.3) which approximates Hessian matrix Q with
matrix D and Jacobian matrix A with (sparser) matrix Ã. To guarantee nonsingularity of the preconditioner
we assume that D is invertible and Ã has full row rank that is rank(Ã) = m ≤ n. In the analysis we use
the error of Jacobian approximation E = A − Ã, and denote as σ̃1 the smallest singular value of Ã.

The following theorem characterises the eigenvalues of P̃−1H in the case n > m. This case is common for
optimization applications.

Theorem 2.1. Assume Ã has maximum rank. The eigenvalues of P̃−1H are either one (with multiplicity
at least 2m − 2p) or real positive and bounded by

λmin(D−1Q) ≤ λ ≤ λmax(D
−1Q)

or bounded by

(2.1) |λ − 1| ≤
‖E‖

σ̃1

.

Proof. The eigenvalues and eigenvectors of P̃−1H must satisfy

(2.2)

[

Q AT

A 0

] [

x

y

]

= λ

[

D (A − E)T

A − E 0

] [

x

y

]

or

(2.3)

{

Qx + AT y = λDx + λAT y − λET y

Ax = λAx − λEx

We now analyze a number of cases depending on x and y.

1. x = 0
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(a) ET y = 0 There are m − p linearly independent vectors y such that ET y = 0. The first

equation simplifies to

AT y = λAT y

so that eigenvector

(

0
y

)

is associated to the unit eigenvalue.

(b) ET y 6= 0 The first equation reads

AT y = λAT y − λET y

Writing λ = 1 + ε we can bound ε in terms of ‖E‖ as

(2.4) |ε| =
‖ET y‖

‖ÃT y‖
≤ ‖E‖

‖y‖

‖ÃT y‖
≤

‖E‖

σ̃1

2. x 6= 0

(a) Ax = 0 From the second equation we have λEx = 0 hence premultiplying the first equations
by xT we obtain

xT Qx = λxT Dx

As proved in [4] this eigenvalue is bounded by the extremal (positive) eigenvalues of D−1Q.

(b) Ax 6= 0, Ex = 0 Now, the second equation reads

Ax = λAx

giving again unit eigenvalues.

(c) Ax 6= 0, Ex 6= 0 Let us multiply the first equation by xH and the second by yH . We obtain

the following system

(2.5)

{

xHQx + xHAT y = λxHDx + λxHÃT y

yHAx = λyHÃx

Now, setting c1 = xHQx, c2 = xHDx; c1, c2 ∈ R and d1 = xHAT y, d2 = xHÃT y and adding
the two equations we obtain

c1 + 2<(d1) = λc2 + 2λ<(d2)

If c2 + 2<(d2) = 0 then λ can be complex and from the second equation we again get the
bound (2.4):

(2.6) |ε| =
‖Ex‖

‖Ãx‖
≤ ‖E‖

‖x‖

‖Ãx‖
≤

‖E‖

σ̃1

If c2 + 2<(d2) 6= 0 then λ ∈ R. Hence, subtracting the transpose of the second equation from
the first one, and using λ = λ̄, (x, y)H = (x, y)T , we obtain the same bound as in 2(a).

xT Qx = λxT Dx.

In the special case of linear programming or separable quadratic programming the Hessian of Lagrangian
Q is a diagonal matrix hence the preconditioner uses exact Hessian D = Q. The analysis simplifies in this
case.
Corollary 2.2. Assume that Ã has maximum rank. The eigenvalues of P̃−1H are either one (with
multiplicity at least n + m − 2p) or bounded by

|λ − 1| ≤
‖E‖

σ̃1

.
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Proof. The eigenvalues and eigenvectors of P̃−1H must satisfy

(2.7)

[

D AT

A 0

] [

x

y

]

= λ

[

D (A − E)T

A − E 0

] [

x

y

]

or

(2.8)

{

Dx + AT y = λDx + λAT y − λET y

Ax = λAx − λEx

The eigenvalues of P̃−1H can be characterised in the same way as in Theorem 2.1 except for cases 2(a) and
2(c) with xHDx + 2<(xHÃT y) = 0. In both these cases the eigenvalue λ must satisfy

xT Dx = λxT Dx, with x 6= 0

from which λ = 1. Then the unit eigenvalue has multiplicity n−m + i, 0 ≤ i ≤ p, more than in the general
(nonseparable) QP case.

We summarise the classification of eigenvalues of preconditioned matrix in table below.

Table 2.1

Types of eigenvalues in P̃−1H.

nonseparable case separable case
Case eigenvector eigenvalue multiplicity eigenvalue multiplicity

1(a) x = 0, ET y = 0 unit m − p unit m − p

1(b) x = 0, ET y 6= 0 complex p complex p

2(a) x 6= 0, Ax = 0 real positive n − m unit n − m

2(b) x 6= 0, Ax 6= 0, Ex = 0 unit m − p unit m − p

2(c) x 6= 0, Ax 6= 0, Ex 6= 0

{

real positive i

complex p − i

{

real positive i

complex p − i

The analysis in Theorem 2.1 suggests that a good preconditioner should (i) keep rank(E) = p as small as
possible, and (ii) keep σ̃1 as large as possible. The first requirement helps to limit the number of complex
eigenvalues and the second helps to keep the bound on |λ − 1| small.
Following the arguments in [4], after dropping all off-diagonal elements from Q and using sparser Ã we
expect an important gain in the sparsity of the Cholesky-like factor of preconditioner (1.3). Moreover, as
in [4], we can exploit the diagonal form of D when computing the inverse representation of P̃ . Indeed, we
open the possibility of reducing the augmented system to the normal equations form whenever the latter
offers any advantages. Summing up, we can choose one of the following forms.
Preconditioner 1 (AS):

(2.9) P̃1 =

[

D ÃT

Ã 0

]

= LΛLT .

Preconditioner 2 (NE): Reduce the system to normal equations ÃD−1ÃT , compute the Cholesky fac-
torization

ÃD−1ÃT = L0D0L
T
0
,

and use:

P̃2 =

[

D ÃT

Ã 0

]

=

[

I 0

ÃD−1 I

] [

D 0

0 −ÃD−1ÃT

] [

I D−1ÃT

0 I

]

=

[

I 0

ÃD−1 L0

] [

D 0
0 −D0

] [

I D−1ÃT

0 LT
0

]

.(2.10)
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The two forms differ only in the implementation, being mathematically equivalent. The spectral analysis
of the preconditioned matrix presented earlier applies to both. Computational results presented below use
the second form of the preconditioner.

3. Numerical results. We have employed the iterative method QMRs [7], which is particularly well-
suited for symmetric indefinite systems. We have compared four alternative methods to solve (1.1): direct
approach as implemented in HOPDM [8], two variants of preconditioned conjugate gradients using exact
constraint preconditioners of form (1.2) as developed in [4] (P1 decomposes indefinite augmented system
while P2 uses its reduced normal equations form), and the new preconditioner P̃2 by (2.10) in which ap-
proximate Jacobian Ã is used.
We have solved several problems from public domain collections of quadratic programs. To avoid reporting
excessive numerical results, we have selected a subset of 7 representative quadratic programs for which
we give detailed solution statistics. Problems sqp2500 * have been made available to us by Professor
Hans Mittelmann. Problems AUG3D* originate from CUTE library and can be retrieved for example from
http://www.sztaki.hu/~meszaros/public ftp/qpdata/cute/.
We start the analysis from the statistics of problems used in our computations. In Table 3.1 we report
problem sizes m, n, the number of nonzero elements in matrix A, the number of off-diagonal nonzero
elements in Q and in the factorization of the complete matrix H, nnz(L).

Table 3.1

Values of m, n, nonzeros in A, off-diagonal nonzeros in Q and in the triangular factors L for augmented matrix nnz(L).

problem m n nnz(A) nnz(Q) nnz(L)
AUG3D 52428 15625 112981 0 2446430
AUG3DQP 52428 15625 85169 0 1507295
AUG3DC 89013 27000 181320 0 5269968
AUG3DCQP 89013 27000 181286 0 5336157
sqp2500 1 2000 2500 52321 738051 3124093
sqp2500 2 2000 2500 52319 14345 3504910
sqp2500 3 4500 2500 115073 738051 3219994

The iterative method QMRs has been stopped using a tolerance tol on the relative residual
‖rk‖

‖b‖
≤ tol =

10−2, 10−4 and a limit of iterations itmax ∈ [50, 100].
All tests have been run on an Intel Xeon PC 2.80 GHz with 2 GB RAM. We have used the pure FORTRAN
version of the solver and we have compiled it with the g77 compiler with -O4 option. The CPU times are
measured in seconds.
In the definition of preconditioner P̃ we used the following dropping rule to determine matrix E:

eij =

{

aij if |aij | < drop · ‖Aj‖ and |i − j| > nband

0 otherwise

where with Aj we denote the jth column of A.
In other words, we drop an element from matrix A if it is below a prescribed tolerance and outside a fixed
band. The first requirement prevents ‖E‖ from becoming too large with consequent going away of the
eigenvalues from the unity (see the bound (2.4) in Theorem 2.1). The second requirement attempts to
control the fill-in of AAT and hence of its Cholesky factor L.
Table 3.2 collects the results of HOPDM runs on all separable test examples for the direct approach (factor-
ization of H) and the QMRs method with preconditioner P̃ with the optimal combination of parameters,
namely itmax, tol, nband, drop, experimentally found after extensive testing.
Table 3.3 provides the same outcome on the sqp2500 * problems. For these tests, we also report the
performance of the PCG preconditioned with both P1 and P2 (“exact” preconditioners). We report in
Tables 3.2 and 3.3 the total CPU time, the fill-in of the Cholesky factor of the preconditioner, the number
of interior point iterations, Its, and the overall number of iterations in the iterative solver, LinIt.
As for the separable problems, the iterative approach produces mixed results. For some of them there
is a significant reduction of the CPU time. On problems AUG3DC and AUG3DCQP, however, dropping some
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Table 3.2

Performance of the proposed preconditioner with optimal combination of the parameters vs direct solver. Separable
problems AUG3D*.

Problem solver itmax tol nband drop CPU nnz(E) nnz(L) Its LinIt
AUG3D direct 62.58 2446430 13

QMRs (P̃2) 100 1.e-2 100 1.0 11.49 89483 184 12 303
AUG3DQP direct 12.14 1507295 12

QMRs (P̃2) 100 1.e-2 10 1.0 3.25 69828 0 13 53
AUG3DC direct 240.32 5269968 17

QMRs (P̃2) 50 1.e-2 10 1.0 248.63 54966 2522599 34 519
AUG3DCQP direct 91.34 5336157

QMRs (P̃2) 50 1.e-2 10 1.0 288.18 54966 2563585 39 590

Table 3.3

Performance of the proposed preconditioner with optimal combination of the parameters vs PCG preconditioned with P1

and P2 and the direct solver. Non-separable quadratic problems sqp2500 *.

Problem solver itmax tol nband drop CPU nnz(E) nnz(L) Its LinIt
sqp2500 1 direct 167.52 3124093 15

PCG (P1) 20 1.e-2 141.03 2029613 19 539
PCG (P2) 20 1.e-2 132.96 1909672 19 539

QMRs (P̃2) 50 1.e-2 10 1.0 32.59 49390 41 18 1481
sqp2500 2 direct 206.32 3504910 16

PCG (P1) 20 1.e-2 130.66 2055283 19 499
PCG (P2) 20 1.e-2 120.37 1909275 19 499

QMRs (P̃2) 50 1.e-2 10 1.0 6.11 49413 37 20 1740
sqp2500 3 direct 215.93 3216994 19

PCG (P1) 20 1.e-2 278.22 3186754 23 291
PCG (P2) 20 1.e-2 1447.23 9874267 24 308

QMRs (P̃2) 75 1.e-4 10 1.0 82.37 112034 50 24 3646

elements from matrix A does not produce a sufficient reduction of the fill-in of L. Hence, the cost of a single
QMRs iteration is comparable to that of the direct solution of the linear system.
Regarding the sqp2500 * problems, the situation is different. The QMRs preconditioned with “best” P̃ , on
problem sqp2500 2, outperforms direct solver as well as the PCG method. Also on the other two problems
the proposed preconditioner is the clear winner in terms of CPU time.

3.1. Detailed analysis on results of problem sqp2500 2. To show how the drop and nband values
may affect the distribution of the eigenvalues of P̃−1H, in Table 3.4 we first report, for some combination of
the parameters, a few characteristics of the preconditioned matrix, namely the number of unit eigenvalues,
the maximum distance from the unity (|ε|, see the proof of Theorem 2.1), and also the smallest real part of
all the eigenvalues. In correspondence to the same cases of Table 3.4 we have plotted all the eigenvalues of

Table 3.4

Spectral properties of the preconditioned matrices for problem sqp2500 2.

nband drop p nnz(E) ones ε min{<(λ)}
∞ 0 0 0 4007 0.33 0.79

100 0.01 909 1042 2005 0.33 0.79
10 0.10 1996 12534 1551 1.64 0.23

100 0.25 2000 30157 1550 5.08 0.04

the preconditioned matrix on the complex plane. In the “no-drop” case (exact constraint preconditioner),
the eigenvalues are all real (the ones are 4007 > 2m = 4000, as expected). With E 6= 0, the number of ones
are less but still remains important. Increasing the drop parameter, also ε increases, but the real part of
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eigenvalues still remains bounded away from zero.

To further analyze the influence of the parameters on the performance of the preconditioner, we report in
Table 3.5 the results of a number of runs on problem sqp2500 2 with different values of itmax, nband and
drop. The value of tol has been kept constant to 10−2. From the table, we can observe that too large
nband values or too small drop values results in a large number of nonzero elements in the Cholesky factor.
On the other hand, fast convergence of the iterative method is achieved even with an almost zero fill-in of
the triangular factor L.

The maximum number of iterations itmax of iterative solver should be carefully selected. In our test prob-
lems we found that itmax = 100 was sufficient to achieve convergence for every choice of the preconditioner
P̃ . However, in many cases a smaller value of itmax produced cheaper solution of linear system (1.1) without
affecting overall convergence of the interior point method.

0 2 4 6 8
exact preconditioner

−1

−0.5

0

0.5

1

0 2 4 6 8
nband = 100,  drop = 0.01

−1

−0.5

0

0.5

1

0 2 4 6 8
nband = 10,  drop = 0.1

−1

−0.5

0

0.5

1

0 2 4 6 8
nband = 100,  drop = 0.25

−1

−0.5

0

0.5

1

Fig. 3.1. Distribution of the eigenvalues of P̃−1H in the complex plane for problem sqp2500 2 with different combinations
of the parameters nband, drop.

4. Conclusions. We have provided in this paper the analysis of inexact constraint preconditioner
for equality constrained optimization problems. We have reported preliminary numerical results which
demonstrate that the new approach is an attractive alternative for direct approach and for exact constraint
preconditioners.
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